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Abstract. Precision agriculture is a useful tool to assess plant growth and development in vineyards. The present

study focused on spatial and temporal analysis of vegetation growth variability, in four irrigation treatments with

four replicates. The research was carried out in a vineyard located in the southwest of Spain during the 2012

and 2013 growing seasons. Two multispectral sensors mounted on an all-terrain vehicle (ATV) were used in

the different growing seasons/stages in order to calculate the vineyard normalized difference vegetation index

(NDVI). Soil apparent electrical conductivity (ECa) was also measured up to 0.8 m soil depth using an on-the-go

geophysical sensor. All measured data were analysed by means of principal component analysis (PCA). The

spatial and temporal NDVI and ECa variations showed relevant differences between irrigation treatments and

climatological conditions.

1 Introduction

Terroir is a French concept that means that “there are unique

aspects of a place that shape the quality of grapes and wine”.

Those aspects that impact on grapes and wine quality are usu-

ally associated with topography, soil, climate, plant manage-

ment and plant genetics (Vaudour, 2002). According to sev-

eral authors, the study of plant vegetative vigour is an essen-

tial parameter to successfully manage yield and grape/wine

quality because plant growth integrates climate, soil, topog-

raphy, available water and other plant controlling factors

(Carbonneau, 1995; Cortell et al., 2005; Deloire et al., 2005;

Smart, 1985). Consequently, appropriate management of soil

and consideration of the main climatic variables are key fac-

tors to obtain good yields and, ultimately, quality wines.

Vineyard canopy management practices such as pruning sys-

tems, shoot orientation, shoot thinning or leaf removal, have

the capacity to modify climate factors around the plant and,

consequently, to modify grape and wine quality (Dry, 2000).

Vineyard behaviours with regard to water management

have been studied in recent decades in a wide range of envi-

ronments and vineyard varieties because of the implications

of irrigation on yield and quality of the final product (Smart

and Coombe, 1983; Williams and Araujo, 2002; Mullins et

al., 1992; Bravdo and Hepner, 1986; Intrigliolo and Castel,

2010). Previous authors also indicate that vine vegetative de-

velopment is highly influenced by water availability, to the

extent that this may become a limiting factor. However, with

the same irrigation depth, sometimes the response between
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two close plants is not the same. This point should be consid-

ered when selecting methods to estimate crop water status in

order to achieve better management and to meet the produc-

tion objectives defined at the beginning of the growing sea-

son. On the one hand, covering all water needs is not recom-

mended because this creates management problems, reduces

crop quality and in general increases unnecessarily the cost

of cultivation. On the other hand, increasing water availabil-

ity to the vineyard causes not only grape production to rise,

but also the costs of pruning and plant protection treatments,

and usually results in reduction of grape quality. Thus, water

stress has to be controlled to achieve good yield and qual-

ity of grapes as well as balanced growth while avoiding the

problems of excess water. It is essential, therefore, to know

the correct way to manage this crop.

Several studies related to spectral vegetation indices (VIs)

have carried out analyses of vine canopy, shape, size and

functional capacity in order to determine spatial and tem-

poral management of vegetation as well as other produc-

tions factors such as water. Spectral VIs are able to predict a

large number of plant features, such as leaf area index (LAI),

vegetation fraction cover, fraction of absorbed photosyntheti-

cally active radiation (fAPAR), chlorophyll pigment concen-

tration, plant stress and other related parameters (Baret and

Guyot, 1991; Gitelson and Merzlyak, 2004; Jordan, 1969;

Peñuelas et al., 1993; Rondeaux et al., 1996). These VIs,

which are mathematical combinations of two or more plant

reflectances at specific wavelengths, can be used in vine

growth site-specific management enabling the optimization

of grape quality and yield (Lamb and Bramley, 2001).

Nowadays, it is possible to obtain a plant spectral signature

with a multispectral proximal sensor (Tardáguila and Diago,

2008) suitable for studying vine vegetation terroir. The nor-

malized difference vegetation index (NDVI), developed by

Rouse et al. (1973), is one of the most extensive indices used

for vegetation growth analysis. It can be calculated as

NDVI=
NIR−Red

NIR+Red
, (1)

where Red and near infra-red (NIR) are the reflectance

parameters in the red and NIR electromagnetic radiation

bands, respectively. When electromagnetic radiation (natu-

ral or man-made) impacts on living green leaves, part of it

is absorbed, another part is transmitted and the rest is re-

flected. The electromagnetic radiation spectral range that can

be absorbed by plants is the photosynthetically active radia-

tion (PAR), and is between 0.4 and 0.7 µm (similar to visible

range). Within this range, chlorophyll is efficient at capturing

the red and blue ranges, and it normally reflects the green,

the infrared (IR) and the NIR ranges. Thus, on the basis of

NDVI, the greater the amount of vegetative cover or canopy,

the higher the value in the index. However, the ability to ab-

sorb and reflect both bands depends not only on health plant

status but also on plant size. Thus, a plant with water stress,

or any other kind of stress (pests, disease, nutritional defi-

ciencies, etc.), will have less capacity to absorb the red band

through photosynthetic apparatus and to reflect the NIR band

on the cell walls, and will consequently have a lower NDVI

value. Therefore, expression of vineyard vegetative develop-

ment can be related to NDVI. Several studies have shown

the relationship between vegetative canopy parameters, such

as LAI and fAPAR, and physiological factors, such as crop

production and grape quality, in harvest or plant water status

(Smart and Coombe, 1983; Jackson et al., 1983; Dry, 2000).

Furthermore, NDVI is also largely related to density of the

vegetative canopy of the vineyard (Dobrowski et al., 2002;

Johnson, 2003; Hall et al., 2008), so that any change in the

factors affecting growth and vineyard development could be

estimated by NDVI.

Terroir is also affected by physical, chemical and biolog-

ical soil properties; as a tool to interpret these soil property

variations, soil apparent electrical conductivity (ECa) may

be used. Soil ECa measurements can characterize soil spa-

tial variability, with regard mainly to the physical features of

the soil, and have been used by other authors to delineate ho-

mogeneous management zones (Terrón et al., 2013; Corwin

and Lesch, 2003; Moral et al., 2010). Soil ECa measurements

can be obtained through geoelectric sensors and this can be

an easy and economical way of sampling the soil and guiding

soil evaluators in their soil property analyses (Terrón et al.,

2011).

According to Hall et al. (2002) the implementation of vine-

yard site-specific tools are needed in order to better manage

vineyards. Thus, the present work makes use of precision

agriculture tools to determine (i) the effects of different irri-

gation treatments on vine vegetation growth in two different

climatic seasons and (ii) influence of the soil on vegetation

growth expression.

2 Material and methods

2.1 Study area and experimental design

The study was carried out during the 2012 and 2013 growing

seasons, in a field belonging to the Agrarian Research In-

stitute “La Orden – Valdesequera”, in Extremadura (Spain)

(38◦51′ N, 6◦40′ E). The climate is characterized by mild

winters and hot summers, with maximum temperatures

reaching 40 ◦C. Rainfall is irregular, with dry summers and

often with an annual average below 500 mm.

The study area is located in a vineyard of 1.8 ha, varietal

Tempranillo (Vitis vinifera L.) grafted on Richter 110. It was

planted in 2001 by vertical trellis in bilateral cordon system,

with 0.6 m stem height and 12 buds per plant. Cultivar Tem-

pranillo is a vigorous variety adaptable to all types of soils,

preferably slightly acid, and oriented towards areas with a

high number of hours of sun per year.

The field is situated in the Guadiana River valley, whose

soil morphology is typical of the Quaternary, carved in Ter-

tiary sediments. Surface horizons have been artificially trans-
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formed for agricultural use with water management, which

has resulted in destruction of these horizons and in burial of

diagnostic horizons, even below 50 cm. These latter horizons

are not differentiated and they have evolved edaphically from

the sediments and materials of the lower terraces of the Gua-

diana River, which cover the coarser sediments. According

to Soil Survey Staff (2006), the soil is in the order Entisol,

suborder Orthent and the great group Xerorthent (Xeric).

There exists a soil study consisting of a 15-point database

randomly distributed on the study area. Tables 1a and 1b

show statistic values of soil samples of some physicochemi-

cal parameters at two depths (from 0 to 0.30 m and from 0.30

to 0.60 m respectively) which were analysed by official lab-

oratory procedures.

From our measurements of a nearby well, we verified that

there exists a water table placed at a depth of 6 m, in accor-

dance with the river water level. However, from our expe-

rience in this area, we know that the level can vary due to

rainfall and water use for irrigation.

The experimental design was randomized complete

blocks, with four replicates (plots) per treatment. Each plot

had 108 vines in 6 rows with 18 vines per row, where the

distance between plants and rows were 1.20 and 2.50 m re-

spectively, placed on a trellis with an east–west row direc-

tion. Water treatments were dependent on the growing season

(Fig. 1):

i. 2012 treatments were divided into four levels of irriga-

tion, corresponding to four levels of crop evapotranspi-

ration (ETc) rates:

a. fully watered, based on the application of 100 %

ETc;

b. regulated deficit irrigation (RDI) 50-20, based on

the regulated deficit irrigation technique, with 50 %

ETc before véraison and 20 % ETc after it;

c. RDI 50-0, based on the regulated deficit irrigation

technique, with 50 % ETc before véraison and 0 %

ETc after it;

d. non-watered, based on rainfed treatment; and

ii. 2013 treatments were reduced to three levels of irriga-

tion, corresponding to three levels of ETc rates:

a. fully watered, based on the application of 100 %

ETc;

b. RDI 30, based on the regulated deficit irrigation

technic, with 30 % ETc throughout the season; and

c. non-watered, based on rainfed treatment.

The irrigation system was set up by drip irrigation with

one emitter of 4 L h−1 every 0.60 m (two emitters per vine)

attached to a wire suspended 0.40 m above the ground. Full

ETc was calculated by means of the weight differences

recorded on a weighing lysimeter installed in the centre of the

Figure 1. Maps of treatments and respective plots: (a) map of treat-

ments of 2012 growing season; (b) map of treatment of 2013 grow-

ing season, where “a” and “b” replicates of RDI 30 are in the same

emplacement of the respective replicates of RDI 50-20 and RDI 50-

0 of the previous season.

assay, corresponding to a fully watered treatment plot (Yris-

sarry and Naveso, 1999). Two grapevine plants were planted

in the lysimeter container in order to provide the water bal-

ance as their canopy developed. Precipitation was collected

by an agro-meteorological station located in a reference field

near the vineyard.

Soil management was characterized by two annual culti-

vator treatments: one in winter dormancy and another at the

bud break phenological stage. Later, spontaneous vegetation

was controlled by herbicide treatments and 250–350 kg ha−1

of NPK fertilization (9-18-27) was added to the soil. With re-

gard to canopy management, a spring pruning was performed

to adjust the potential yield to the 12 initial shoots. Subse-

quently, before the véraison stage, growing shoots were in-

troduced into the trellis to facilitate the passage of agricul-

tural machinery. From véraison to harvest, plant protect treat-

ments were made against cryptogamic diseases in cycles of

15 to 20 days.

2.2 Vegetation index and soil apparent electrical

conductivity

The NDVI estimation was performed with two active proxi-

mal multi-spectral sensors mounted on an all-terrain vehicle

(ATV). These sensors (OptRx ACS-430, Ag Leader Tech-

nology, USA) report directly the vineyard canopy NDVI

calculated with red (0.67 µm) and NIR (0.78 µm) wave-

lengths. Data sets were collected using a personal digital

assistant (PDA) data logger connected to the sensors with

TopView software (Betop Topografía SL, Seville – Spain).

Geographical coordinates were obtained by a dual-frequency

global positioning system (GPS) (GGD Maxor JAVAD Javad

GNSS Inc., USA) with real-time kinematic (RTK) differen-

tial corrections that reached a planimetric accuracy lower
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Table 1. (a) Soil composition from 0 to 0.30 m of the vineyard assay. (b) Soil composition from 0.30 to 0.60 m of the vineyard assay.

(a) Sample Clay Sand Silt Texture pH (1 : 2.5) Organic matter Total nitrogen Assimilable phosphorus Potassium (K+) CEC

% % % % % ppm meq (100 g)−1 meq (100 g)−1

1 21.4 51.14 27.46 Silty clay loam 6.91 1.35 0.038 22.93 0.164 8.82

2 17.76 55.03 27.21 Sandy loam 7.23 1.27 0.024 0.3 0.113 7.64

3 17.33 58.13 24.54 Sandy loam 7.38 0.83 0.02 0.3 0.109 7.68

4 21.35 43.6 35.05 Loam 7.27 0.94 0.022 2.42 0.168 7.57

5 22.13 41.67 36.2 Loam 6.74 0.88 0.013 15.09 0.171 8.24

6 21.93 40.63 37.44 Loam 7.13 0 0.014 7.26 0.159 9.45

7 25.87 39.02 35.11 Loam 7.31 0.08 0.019 21.22 0.235 10.54

8 20.45 47.05 32.5 Loam 7.37 0.16 0.022 0.3 0.205 10.2

9 17.25 41.65 41.1 Loam 6.87 1.2 0.03 24.04 0.201 10.91

10 19.35 48.98 31.67 Loam 6.82 1.3 0.03 35.23 0.259 11.07

11 20.22 51.02 28.76 Loam 6.72 1.12 0.022 74.13 0.268 10.87

12 19.47 52.49 28.04 Sandy loam 6.81 0.8 0.026 32.46 0.199 10.44

13 18.85 49.13 32.02 Loam 7.08 0.9 0.019 22.58 0.197 10.85

14 19.45 47.78 32.77 Loam 7.23 0.88 0.027 12.31 0.176 10.64

15 20.14 50.32 29.54 Loam 7.23 1 0.029 20.34 0.197 10.14

Mean 20.20 47.84 31.96 7.07 0.85 0.02 19.39 0.19 9.67

Median 20.14 48.98 32.02 7.13 0.90 0.02 20.34 0.20 10.20

SD 2.21 5.57 4.48 0.24 0.44 0.01 19.02 0.05 1.32

Skewness 3.03 −0.07 −1.98 −0.14 −0.91 0.41 1.62 0.08 −0.67

Kurtosis 11.38 2.20 7.62 1.53 2.78 3.02 6.03 2.77 1.85

(b) Sample Clay Sand Silt Texture pH (1 : 2.5) Organic matter Total nitrogen Assimilable phosphorus Potassium (K+) CEC

% % % % % ppm meq (100 g)−1 meq (100 g)−1

1 16.86 55.55 27.48 Sandy loam 7.39 0.1 0.003 0.2 0.105 8.51

2 17.32 46.08 36.6 Loam 6.98 0.39 0.007 0.2 0.115 9.52

3 14.17 59.75 26.08 Sandy loam 7.49 0.1 0.005 0.2 0.099 8.23

4 21.93 44.7 33.37 Loam 6.77 0.45 0.018 0.2 0.132 10.92

5 22.92 37.67 39.41 Loam 6.46 0.31 0.014 0.2 0.137 11.81

6 19.86 43.28 36.86 Loam 6.86 0.19 0.004 0.2 0.117 11.58

7 25.61 34.72 39.67 Loam 6.83 0.28 0.009 0.2 0.145 11.66

8 25.1 32.77 42.13 Loam 7.19 0.39 0.009 0.2 0.151 11.45

9 25.4 33.27 41.33 Loam 6.72 0.38 0.008 0.2 0.136 11.81

10 24.55 39.19 36.26 Loam 6.63 0.64 0.016 0.2 0.153 28.19

11 23.25 41.11 35.64 Loam 6.67 0.65 0.011 7.04 0.149 19.53

12 19.44 48.78 31.78 Loam 6.43 0.66 0.026 6.02 0.135 9.55

13 19.82 47.28 32.9 Loam 6.48 0.69 0.02 11.77 0.14 9.5

14 19.43 47.45 33.12 Loam 6.57 0.53 0.012 15.15 0.134 9.54

15 18.13 48.75 33.12 Loam 6.42 0.73 0.012 19.18 0.126 9.32

Mean 20.92 44.02 35.05 6.79 0.43 0.01 4.08 0.13 12.07

Median 19.86 44.70 35.64 6.72 0.39 0.01 0.20 0.14 10.92

SD 3.51 7.81 4.63 0.34 0.21 0.01 6.40 0.02 5.20

Skewness −0.09 0.40 −0.11 0.88 −0.26 1.44 1.06 −0.66 2.42

Kurtosis 2.03 2.46 2.48 2.69 1.83 4.86 2.50 2.57 7.99

than 0.03 m. To obtain vineyard canopy reflectance the ac-

tive multi-spectral sensors were placed in nadir position and

at a distance, from the top of the grapevines rows, of 0.80 m

(±0.20 m, depending on the vineyard height) (Fig. 2). The

number of intra-year spectral data sets was fixed to 5 and,

according to the season: (i) in 2012, they were started on

29 May and ended on 6 September; and (ii) in 2013, they

were started on 30 May and ended on 2 September.

To validate the NDVI with the LAI, several measurements

of the latter were taken throughout the ripening stage of the

crop in both years. Measurements were recorded by a Plant

Canopy Analyser LAI-2000 (LI-COR, Inc, USA), following

the procedure of Mabrouk and Carbonneau (1996).

ECa measurements were conducted on 18 February 2011,

with a VERIS 3150 Surveyor sensor (Fig. 3), simultaneously

in two different soil levels: (i) shallow or ECs – to a depth of

0.30 m from the soil surface; and (ii) deep or ECd – to a depth

of 0.80 m from the surface. Sampling details can be found in

Moral et al. (2010).

2.3 Geostatistical and statistical processing

The samplings shown in this work, corresponding to each

data set of both growing seasons, were statistically anal-

ysed by means of ArcGIS v.10.1 software (ESRI, USA) for

geostatistical analyses, and SPSS v.17 software (SPSS Inc.,

USA), for inferential statistics analyses.

The geostatistical analysis of the multi-temporal NDVI

samplings included the followings phases:

i. Voronoi map – a previous exploratory analysis of the

samplings was performed to extract outliers.

ii. ordinary Kriging interpolation – the parameters used in

the semivariograms of each sampling to generate the

corresponding maps are shown in Table 2. Once ob-
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Table 2. Parameters corresponding to the theoretical semivariograms for the NDVI samplings in 2012 and 2013 growing seasons and for the

CEa samplings in 2011 growing season.

Data set Variable Model Lag size (m) Nugget Range (m) Partial sill RMSE

29 May 2012 NDVI Spherical 6 0.009 36.5 0.003 0.098

6 July 2012 NDVI Spherical 6 0.007 32.7 0.005 0.091

24 July 2012 NDVI Spherical 6 0.005 31.0 0.007 0.083

14 August 2012 NDVI Spherical 6 0.005 28.7 0.007 0.078

6 September 2012 NDVI Spherical 6 0.003 33.2 0.005 0.063

30 May 2013 NDVI Spherical 6 0.008 72.0 0.003 0.092

8 July 2013 NDVI Spherical 6 0.004 72.0 0.003 0.068

22 July 2013 NDVI Spherical 6 0.006 72.0 0.002 0.083

12 August 2013 NDVI Spherical 6 0.005 72.0 0.003 0.074

2 September 2013 NDVI Spherical 6 0.002 72.0 0.002 0.051

18 February 2011 ECs Spherical 7 0.321 70.6 0.808 0.601

18 February 2011 ECd Spherical 7 0.594 67.3 2.264 0.943

Figure 2. ATV with two multi-spectral sensors for NDVI mapping

of vineyard canopy.

tained, these maps were rasterized using a pixel size of

2 m.

iii. principal component analysis (PCA) – in this work, a

PCA process was established separately for each of the

years of study.

At each analysis, input raster data set included the five NDVI

samplings of the growing seasons, and the output data were

distributed in five principal components. Thus, the results of

the PCA analyses obtained consisted of five principal com-

ponents for each year, where the first principal component

shows the NDVI spatial variability for all the mapping dates

of each year.

Meanwhile, the ECa samplings were also geostatistically

analysed. In this case, only the ordinary Kriging interpolation

tool was used, from which the ECs and ECd maps of 2011

were obtained. The parameters used to interpolate the ECa

samplings are also shown in Table 2.

Figure 3. Mobile sensor platform Veris 3150 for ECa mapping.

The NDVI samplings from both growing seasons and the

ECa samplings at both depths acquired by Kriging were sta-

tistically analysed in two phases: (i) firstly, descriptive pa-

rameters of each water treatment at each sampling date were

acquired to obtain global knowledge of the behaviour of each

of the components that make up the statistical design; (ii) sec-

ondly, variance analyses of each treatment at each sampling

date were made. These analyses allowed comparison of the

previously mentioned spatial and temporal behaviours.

To analyse relationships among all the variables studied,

values of the first principal component (PC1) of the NDVI

variables in both sampling sequences (years 2012 and 2013)

and of ECa (ECs and ECd) in the sampling points from the

raster maps (Figs. 6 and 7) were extracted and are shown in

Table 3.

Finally, in order to determine the importance of the local

soil characteristics, given by the ECa and NDVI parameters

respectively, in the vegetative expression of the vineyard, the

www.soil-journal.net/1/459/2015/ SOIL, 1, 459–473, 2015
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Figure 4. (a) Accumulation of rainfall and ETc of 2012 and 2013 growing seasons. (b) Temperature components recorded in both 2012

and 2013 growing seasons: Tmean, Tmax and Tmin are monthly average, maximum and minimum temperature respectively; GDD is the

growing degree day reached the last day of the month.

Table 3. CEa, shallow and deep, and first principal component of

the NDVI at soil sample localizations.

Sample CEa (mS m−1) First principal

component NDVI

Shallow Deep 2012 2013

1 5.11 7.63 1.42 1.31

2 3.79 6.38 1.27 1.29

3 3.77 5.96 1.31 1.29

4 5.97 10.00 1.50 1.51

5 5.05 8.61 1.24 1.44

6 5.62 8.72 1.29 1.38

7 6.98 11.29 1.35 1.36

8 6.42 11.12 1.56 1.61

9 4.99 9.55 1.55 1.58

10 5.18 10.05 1.57 1.70

11 5.89 9.58 1.35 1.57

12 4.52 8.17 1.35 1.68

13 4.97 9.36 1.51 1.66

14 4.81 9.15 1.55 1.65

15 5.61 9.85 1.59 1.66

Mean 5.25 9.03 1.43 1.51

Median 5.11 9.36 1.42 1.57

SD 0.88 1.52 0.12 0.15

Skewness −0.01 −0.61 −0.11 −0.41

Kurtosis 2.76 2.94 1.47 1.57

geographically weighted regression (GWR) tool, included in

ArcGIS v.10.1 software (ESRI, USA), was used. The rela-

tionship between both variables resulted in maps of deter-

mination coefficient (R2) of each water treatment, growing

season and depth. The chosen geometric resolution was of

4 m of spatial resolution, which led to goodness of fit in the

influence of soil characteristics on the vegetative growth of

vines in each of the irrigation treatments of the assay.

3 Results and discussions

Climatic variables logged by the weather station situated in

a reference field near the tested vineyard recorded diverse

behaviour during the 2-year test, with drier conditions in the

first growing season. Figure 4a and b show cumulative annual

rainfall, cumulative annual ETc, temperature parameters and

growing degree days (GDDs) on both years. Focusing on the

accumulation of precipitation, the total amount in the sec-

ond year trial (2013) was more than double compared to the

first year trial, where only in its first quarter it had the same

amount of rainfall as the whole previous season. However,

during the final stages of vegetative development and in the

whole ripening phenologic stages, both years had a similarly

low accumulation of precipitation. In fact, the temperature

was not very different between both years. The observed cli-

matological differences in both seasons influenced differen-

tially the vineyard vegetative development with respect to the

different irrigation treatments analysed in this study.

Despite the large difference in precipitations between the

two growing seasons, however, for the second year of the

test, which was the wettest, hydric demand was similar to the

previous year. This result permitted comparison of vegetative

response of two consecutive years that were very different in

their climatology. Furthermore, if this premise remains con-

stant over the years, it could be possible to know the total

needs of the culture of vineyards under whatever climatolog-

ical conditions, and appropriate reductions could be made in

ETc for a watering schedule based on precipitation occurring

at each moment of the campaign. Obviously, as Wample and

Smithyman (2002) have reported, increases in hydric neces-

sities at each phenological stage must be taken into account,

as shown in the slope changes of the accumulation curve of

ETc (Fig. 4a), and care must be taken in dry seasons not to

bring about unwanted water stress.

In this study, Fig. 5 shows the relationship between LAI

estimations and NDVI measurements at the ripening stage of

grapes in both years. It can be confirmed that they are well re-

lated (R2
= 0.81), thus indicating the possibility to estimate

the degree of development of vineyard crops by NDVI de-

terminations obtained by proximal active sensors. These re-

sults are in agreement with several authors who have found

a good NDVI–LAI relationship (Johnson, 2003).With regard

to temporal variability, Fig. 6 shows the results obtained in

the first principal component (PC1) of each PCA made on the
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Table 4. Correlation matrix (R2) among properties and vegetative vigour expression of the vineyard assay area.

Clay content (%) CEC ECs ECd First principal component

0–0.3 m 0.3–0.6 m 0–0.3 m 0.3–0.6 m 0–0.3 m 0–0.8 m NDVI 2012 NDVI 2013

Clay content (%) 0–0.3 m 1

0.3–0.6 m 0.15 1

CEC 0–0.3 m 0.00 0.27 1

0.3–0.6 m 0.00 0.29 0.18 1

ECs 0–0.3 m 0.59 0.48 0.14 0.05 1

ECd 0–0.8 m 0.27 0.68 0.38 0.13 0.79 1

First principal component NDVI 2012 0.05 0.08 0.27 0.04 0.07 0.31 1

NDVI 2013 0.05 0.15 0.52 0.13 0.03 0.30 0.50 1

Figure 5. NDVI–LAI relationship of both 2012 and 2013 years.

different mapping dates in each growing season. According

to these results, there were differences in plant development

even when the same doses of irrigation and cultural practices

were administered to the plots with different types of irriga-

tion treatment.

Soil properties, spatial variation of ECa, both ECs and

ECd, and PC1 of NDVI (both 2012 and 2013 growing sea-

sons) were statistically analysed (Table 4). On the one hand,

ECs and ECd results were correlated with the clay content

from 0 to 0.30 m (R2
= 0.59 and R2

= 0.27, respectively)

and from 0.30 to 0.60 m (R2
= 0.48 and R2

= 0.68, respec-

tively). These results indicate that ECa could be used as a

tool to estimate some soil properties – thus avoiding the time-

consuming inconvenience and cost of soil sampling and anal-

ysis in the laboratory. On the other hand, it is of interest to

note the correlation between CEC, from 0 to 0.30 m, and PC1

of NDVI of 2013 (R2
= 0.53), indicating the higher influence

of soil fertility due to the existence of water resources in that

year.

Results of ECa spatial variation (Fig. 7) seem to be a pat-

tern consisting of a variation in ECa from the northern and

southern boundaries of the assay up to the centre, and also

from east to west, coinciding with some physicochemical pa-

rameters of soil. There exists, too, a pattern in the variability

of soil characteristics due to the good relationship with ECa,

in particular with clay content (Moral et al., 2010). Spatial

variability of ECa, both shallow and deep, had also shown

significant differences among the locations of the plots of the

Figure 6. NDVI first principal component of (a) 2012 and (b) 2013.

different irrigation treatments (Table 5), with different val-

ues for the soil properties that influenced vegetative growth

of the grapevines. In general, the spatial variability pattern

mentioned above was observed in the plots with the differ-

ent treatments, with higher ECs or ECd values in those plots

near the northern and southern boundaries of the vineyard

test site. Because of this spatial variability, it was necessary

to perform, even within plots of the same treatment, geosta-

tistical analyses between NDVI and ECa to determine the ex-

tent of the influence of soil properties on vegetative growth

of the vineyard in each of the irrigation treatments and their

respective plots.

3.1 Intra-year variability

3.1.1 2012 growing season

Both temporal and spatial evolution of the NDVI index of the

irrigation treatments and their respective plots in the 2012

growing season is shown in Fig. 8. At first glance, the re-

sults of NDVI mapping for this year show how all the treat-

ments had a temporal evolution similar to a Gaussian func-

tion, the mean value of the index increasing as the campaign

advanced, reaching a maximum value around the phenolog-

www.soil-journal.net/1/459/2015/ SOIL, 1, 459–473, 2015



466 J. M. Terrón et al.: Evaluation of vineyard growth under four irrigation regimes

Table 5. Statistic descriptive analyses of shallow and deep soil ECa interpolated data.

Data set Treatment Plot1 Mean2 SD Minimum Maximum Range Skewness

(mS m−1) (mS m−1) (mS−1) (mS m−1) (mS m−1)

ECs Fully watered 1 5.57cd 0.29 4.95 6.30 1.35 0.32

Fully watered 2 5.49d 0.33 4.84 6.21 1.37 0.01

Fully watered 3 6.63a 0.55 5.54 7.69 2.15 −0.02

Fully watered 4 5.94b 0.48 5.05 6.83 1.78 0.16

RDI 50-20 – RDI 30a 1 4.55h 0.17 4.23 5.06 0.83 0.40

RDI 50-20 – RDI 30a 2 5.52d 0.42 4.60 6.75 2.15 −0.08

RDI 50-20 – RDI 30a 3 6.59a 0.30 5.82 7.39 1.57 0.14

RDI 50-20 – RDI 30a 4 5.61de 0.43 4.81 6.51 1.70 0.24

RDI 50-0 – RDI 30b 1 5.29ef 0.49 4.50 6.26 1.76 0.27

RDI 50-0 – RDI 30b 2 5.25f 0.23 4.72 5.63 0.91 −0.52

RDI 50-0 – RDI 30b 3 5.14f 0.49 4.31 6.40 2.09 0.51

RDI 50-0 – RDI 30b 4 5.72c 0.74 4.33 7.10 2.77 −0.16

Non-watered 1 4.80g 0.30 4.39 5.71 1.32 0.66

Non-watered 2 5.4de 0.45 4.27 6.45 2.18 −0.29

Non-watered 3 5.60cd 0.51 4.61 6.50 1.89 0.19

Non-watered 4 5.49d 0.30 5.03 6.60 1.57 0.76

ECd Fully watered 1 9.90cd 0.77 8.79 13.81 5.02 2.69

Fully watered 2 10.01c 0.39 9.06 10.83 1.77 0.21

Fully watered 3 10.96b 0.77 8.95 12.49 3.54 −0.03

Fully watered 4 9.96c 0.64 8.76 12.06 3.30 0.51

RDI 50-20 – RDI 30a 1 8.62gh 0.33 8.07 9.62 1.55 0.76

RDI 50-20 – RDI 30a 2 9.97c 0.49 9.00 11.23 2.23 0.15

RDI 50-20 – RDI 30a 3 11.37a 0.36 9.62 12.00 2.38 −1.38

RDI 50-20 – RDI 30a 4 8.82fg 1.05 7.11 10.82 3.71 0.23

RDI 50-0 – RDI 30b 1 8.91f 0.48 7.75 10.15 2.40 0.35

RDI 50-0 – RDI 30b 2 9.68d 0.37 9.01 10.33 1.32 −0.21

RDI 50-0 – RDI 30b 3 9.76cd 0.48 8.73 10.55 1.82 −0.43

RDI 50-0 – RDI 30b 4 8.88fg 1.51 6.08 11.50 5.42 −0.04

Non-watered 1 8.53h 0.37 7.82 9.47 1.65 0.27

Non-watered 2 9.40e 0.77 7.41 11.14 3.73 −0.20

Non-watered 3 9.77cd 0.28 9.11 10.49 1.38 0.35

Non-watered 4 8.72fgh 0.57 7.90 10.53 2.63 0.99

Sampling was carried out on 18 February 2011. 1 Plots are numbered in a north–south orientation. 2 Variance analyses among treatments are made for each data

set independently; a, b, c, and d mean significant difference at p value≤ 0.05 in Tukey post hoc analysis.

ical stage of véraison, and then decreasing until harvest. In

spite of this sigmoidal evolution, a positive relationship be-

tween NDVI and water dose occurred, in which the fully wa-

tered treatment maintained the higher mean value of NDVI,

and the non-watered treatment the lower mean value, for all

the mapping dates, these differences being, moreover, sig-

nificant (Table 6). These results indicate that the greater the

quantity of water in the vineyard the higher the vegetative

development of its canopy.

The intermediate RDI 50-20 and RDI 50-0 irrigation treat-

ments also showed significant differences between NDVI

values with regard to the previous ones, with intermediate

values. Both RDI treatments kept their NDVI values similar

up to January, and then they became different as a result of

the change in the water dose of the experimental design. At

that moment, the RDI 50-0 treatment had a greater decrease

in NDVI mean value and, consequently, in vegetative expres-

sion of the vineyard. Taking into account these aspects, and

bearing in mind the existing relationship between vegetative

growth of the vines and NDVI value, it can be considered that

the latter increased its value when water doses were higher,

and that variations in doses will result in changes in the veg-

etative expression of the vineyard.

On the other hand, despite the relation found between the

water doses applied in the assay and the vegetative develop-

ment of the vines, there were significant differences among
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Table 6. Statistic descriptive analyses of the NDVI interpolated data sets for 2012 and 2013 growing seasons (dimensionless).

Data set Treatment Mean1 SD Minimum Maximum Range2 Skewness

29 May 2012 Fully watered 0.643a 0.036 0.502 0.713 0.211 −0.319

RDI 50-20 0.608b 0.039 0.507 0.691 0.184 −0.548

RDI 50-0 0.597c 0.046 0.472 0.706 0.234 −0.265

Non-watered 0.572d 0.044 0.446 0.677 0.231 −0.302

Mean 0.605 0.041 0.482 0.697 0.215

6 July 2012 Fully watered 0.729a 0.050 0.586 0.807 0.221 −0.535

RDI 50-20 0.708b 0.042 0.579 0.780 0.201 −0.591

RDI 50-0 0.714b 0.054 0.569 0.817 0.248 −0.311

Non-watered 0.624c 0.060 0.453 0.766 0.313 −0.210

Mean 0.694 0.052 0.547 0.793 0.246

24 July 2012 Fully watered 0.750a 0.041 0.597 0.813 0.216 −0.998

RDI 50-20 0.718b 0.046 0.452 0.789 0.337 −1.300

RDI 50-0 0.721b 0.055 0.554 0.803 0.249 −0.767

Non-watered 0.618c 0.064 0.430 0.730 0.300 −0.448

Mean 0.702 0.052 0.508 0.784 0.276

14 August 2012 Fully watered 0.742a 0.039 0.483 0.803 0.320 −1.853

RDI 50-20 0.712b 0.048 0.577 0.794 0.217 −0.475

RDI 50-0 0.696c 0.070 0.512 0.800 0.288 −0.828

Non-watered 0.613d 0.054 0.404 0.731 0.327 −0.568

Mean 0.691 0.053 0.494 0.782 0.288

6 September 2012 Fully watered 0.701a 0.032 0.575 0.761 0.186 −0.825

RDI 50-20 0.673b 0.045 0.534 0.740 0.206 −0.681

RDI 50-0 0.647c 0.070 0.445 0.750 0.305 −0.917

Non-watered 0.600d 0.056 0.417 0.707 0.290 −0.647

Mean 0.655 0.051 0.493 0.740 0.247

30 May 2013 Fully watered 0.671b 0.039 0.570 0.749 0.179 −0.454

RDI 30a (previous 50-20) 0.680a 0.045 0.570 0.749 0.179 −0.728

RDI 30b (previous 50-0) 0.665b 0.053 0.518 0.747 0.229 −0.573

Non-watered 0.671b 0.050 0.528 0.761 0.233 −0.547

Mean 0.672 0.047 0.547 0.752 0.205

8 July 2013 Fully watered 0.779a 0.040 0.655 0.831 0.176 −0.827

RDI 30a (previous 50-20) 0.766b 0.052 0.597 0.833 0.236 −1.000

RDI 30b (previous 50-0) 0.754bc 0.069 0.555 0.832 0.277 −1.138

Non-watered 0.761c 0.050 0.614 0.823 0.209 −0.808

Mean 0.769 0.053 0.605 0.830 0.225

22 July 2013 Fully watered 0.737a 0.034 0.646 0.794 0.148 −0.429

RDI 30a (previous 50-20) 0.738a 0.049 0.607 0.792 0.185 −1.200

RDI 30b (previous 50-0) 0.724b 0.063 0.547 0.802 0.255 −1.238

Non-watered 0.728b 0.043 0.617 0.792 0.175 −0.659

Mean 0.732 0.047 0.604 0.795 0.191

12 August 2013 Fully watered 0.749a 0.042 0.632 0.822 0.190 −0.366

RDI 30a (previous 50-20) 0.734b 0.053 0.570 0.797 0.227 −0.986

RDI 30b (previous 50-0) 0.721c 0.071 0.542 0.810 0.268 −0.989

Non-watered 0.718c 0.050 0.583 0.796 0.213 −0.735

Mean 0.731 0.054 0.582 0.806 0.225

2 September 2013 Fully watered 0.753a 0.030 0.656 0.795 0.139 −0.766

RDI 30a (previous 50-20) 0.742b 0.035 0.624 0.790 0.166 −1.076

RDI 30b (previous 50-0) 0.731c 0.054 0.564 0.791 0.227 −1.133

Non-watered 0.725d 0.037 0.609 0.781 0.172 −0.543

Mean 0.738 0.039 0.613 0.789 0.176

1 Variance analyses among treatments are made for each data set independently; a, b, c, and d mean significant difference at p value≤ 0.05 in Tukey post hoc

analysis. 2 Statistical range of NDVI values (max–min).
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Figure 7. Interpolated apparent electrical conductivity maps of

2011 growing season: (a) shallow ECa map and (b) deep ECa map.

the various plots of each water treatment (data not shown),

indicating that spatial variability of the NDVI index existed,

and consequently of vegetative growth too, which was de-

pendent on other factors, even though the characteristics of

the management were identical. In this respect, it can be ob-

served in Fig. 8 how vegetative expression was not homo-

geneous in all the plots within a specific water treatment,

but rather variations were found in the NDVI value depend-

ing on the geographical location of each of the plots. Thus,

on a specific mapping date, some plots with different wa-

ter treatments had similar mean values of NDVI, even be-

tween plots with fully watered and non-watered treatments.

A factor associated with geographical location, therefore, has

had some influence on the vegetative growth. The terroir ef-

fect, in which the physicochemical parameters of soil are in-

cluded, could be one of the factors that have caused a cer-

tain influence on vegetative development, as indicated by van

Leeuwen and Seguin (2006).

A priori, the global results on the relationship between

NDVI and ECa indicate a low association when compared

in the first 0.30 m of soil depth (ECs, Table 7), and a rel-

atively high one when a large section of soil is considered

(ECd, Table 7). These results suggest that the soil surface

layer has little influence on vegetative expression of the vine-

yard because of the deeper distributions of the roots, although

it does influence other crops with shallow roots (Fortes et

al., 2014). Furthermore, in the year when climatic quality in-

volved drought (2012), ECa and NDVI values were lower,

suggesting that the soil properties seem to be an influential

factor but not a limiting one in vegetative expression, the

availability of water resources being the principal limiting

factor.

Figure 8. Interpolated NDVI maps of 2012 growing season:

(a) 29 May; (b) 6 July; (c) 24 July; (d) 14 August; and (e) 6 Septem-

ber.

Figure 9. NDVI maps year 2013: (a) 30 May; (b) 8 July;

(c) 22 July; (d) 12 August; and (e) 2 September.

3.1.2 2013 growing season

Figure 9 shows the spatial and temporal evolution of NDVI in

the watered treatments and their respective plots in the 2013

growing season. In the same way as the previous year, in-

creased water doses applied to the vineyard were associated

with a higher NDVI mean value. However, in this season, the

differences in this mean value were closer, being no higher

than 0.10 points of index value. The intense precipitations be-

tween post-harvest of 2012 and flowering of 2013 decreased

the possibility of water stress in the vines, so vegetative de-

velopment was very similar at the beginning of the NDVI

mappings, the only difference being the RDI 30 treatment

that came from the RDI 50-20 of the previous growing season

(Table 6). On the other hand, in the 2013 season, temporal
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Figure 10. Local R2 of GWR analyses: (a) first principal compo-

nent of NDVI in 2012 and ECs of 2011; (b) first principal compo-

nent of NDVI in 2013 and ECs of 2011; (c) first principal compo-

nent of NDVI in 2012 and ECd of 2011; (d) first principal compo-

nent of NDVI in 2013 and ECd 2011.

evolution of the mean NDVI value of the whole treatments

was more homogeneous for most of the season. Generally

speaking, there was an initial increment of the NDVI value

in all treatments up to the phenological stage of véraison,

from which point that value was constant until the harvest.

Both results, i.e. higher and constant NDVI values as com-

pared to the previous season, may have been caused by the

high groundwater recharge, which provided almost unlimited

water to plants during the early stages of vineyard growth.

With regard to temporal behaviour of NDVI between wa-

ter treatments, the mean value of the index resulted in slightly

higher significant differences as the season progressed, with

two different groups of treatments at véraison (Table 6):

(i) fully watered and RDI 30a and (ii) non-watered and

RD 30b. From this moment until harvest, the irrigation treat-

ments of the first group showed significant differences in the

mean NDVI value, while treatments of the second group had

a similar value. In general, in the same way as the previous

season, there were some factors, in this case climatological

ones, that modified the expected trend of a vineyard managed

under specific water conditions.

The irrigation treatments of the 2013 growing season also

had significant differences in mean NDVI values among their

respective plots spatially (data not shown), with a pattern of

reduced values from north to south of the vineyard test area.

Thus, for the same water treatment and mapping date, the

mean NDVI values of each plot decreased the further south

the plot was located, with, furthermore, significant differ-

ences among them. This result was already shown by Blanco

Table 7. Correlation matrix (R2) between first principal compo-

nents of 2012 and 2013 growing seasons and apparent electrical

conductivities, shallow and deep, interpolated data of 2011.

Variable First PC First PC ECs ECd

NDVI 2012 NDVI 2013 2011 2011

First PC NDVI 2012 1.00

First PC NDVI 2013 0.58 1.00

ECs 2011 0.18 0.16 1.00

ECd 2011 0.59 0.70 0.83 1.00

et al. (2012), who reported that vegetative growth of vines

under the same management had different behaviours due

to spatial changes in some influential factor, such us spatial

variability of the physicochemical properties of soil. On the

other hand, the influence of terroir, taking into account its

climatic and edaphic factors, was so high in the 2013 sea-

son that it gave rise to similar mean NDVI values, with some

exceptions, in plots with different irrigation treatments. Thus,

for example, northern plots of fully watered and non-watered

treatments gave similar NDVI values, as did the southern

plots, but these values were statistically different between the

two geographical locations. This behaviour can be seen in

Fig. 9.

Figure 10 shows the local relationship between the PC1

of NDVI in each growing season and the ECa in 2011, both

shallow and deep, throughout the test area, which is the level

of influence of soil features on vegetative development in

each water treatment. The highest ratios prevailed, again, in

the northern and southern limits of the test area, in agreement

with those zones where ECa reached the lowest values. Thus,

the maximum values in the relationship between soil prop-

erties and vegetative growth were obtained during the 2013

season; values of R2 in the relationship between soil prop-

erties and vegetative growth were obtained during the 2013

season, with values of R2 of 0.55 and 0.64 points of ECs and

ECd respectively, compared to 0.56 and 0.47 points reached

in 2012. Thus, a lower maximum value of ECa was produced

in the 2012 growing season. However, that year presented a

good relationship between ECa and NDVI in a larger area

than the 2013 growing season. These results could be due to

the fact that soils with water limits in zones where ECa has

low values (and lower expected clay content) (Sudduth et al.,

2005; Terrón et al., 2011) tend to have higher water availabil-

ity for the plant as compared to soils with higher ECa values

(higher percentage of clay content).

3.2 Between-year variability

The results of each mapping date of NDVI in both growing

seasons (Figs. 8 and 9) show the behaviour of the vegeta-

tive development of the whole treatments established in the

experimental designs. As has already been stated, NDVI val-

ues and, accordingly, vegetative growth of the vineyard were
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Table 8. Correlation matrices between 2012 and 2013 NDVI surfaces of each irrigation treatment.

2012

Treatment Data set 29 May 6 July 24 July 4 August 6 September

Fully watered 29 May 1

6 July 0.47 1

24 July 0.33 0.65 1

14 August 0.42 0.35 0.47 1

6 September 0.28 0.57 0.59 0.57 1

RDI 50-20 29 May 1

6 July 0.74 1

24 July 0.61 0.72 1

14 August 0.69 0.79 0.70 1

6 September 0.70 0.81 0.66 0.84 1

RDI 50-0 29 May 1

6 July 0.59 1

24 July 0.69 0.86 1

14 August 0.69 0.89 0.86 1

6 September 0.68 0.86 0.83 0.95 1

Non-watered 29 May 1

6 July 0.70 1

24 July 0.68 0.83 1

14 August 0.66 0.83 0.81 1

6 September 0.65 0.82 0.79 0.90 1

2013

30 May 8 July 22 July 12 August 2 September

Fully watered 30 May 1

8 July 0.76 1

22 July 0.61 0.61 1

12 August 0.58 0.66 0.67 1

2 September 0.64 0.79 0.63 0.76 1

RDI 30a 30 May 1

8 July 0.85 1

22 July 0.82 0.86 1

12 August 0.83 0.85 0.93 1

2 September 0.83 0.87 0.91 0.90 1

RDI 30b 30 May 1

8 July 0.90 1

22 July 0.87 0.93 1

12 August 0.88 0.94 0.95 1

2 September 0.89 0.95 0.95 0.96 1

Non-watered 30 May 1

8 July 0.80 1

22 July 0.77 0.88 1

12 August 0.84 0.89 0.88 1

2 September 0.73 0.83 0.85 0.86 1

influenced by soil properties (including groundwater level)

in spatial components, and by climatic features in temporal

ones.

With regard to the temporal variability, Fig. 6 shows the

results obtained in the first principal component (PC1) of

each PCA made for the different mapping dates in each grow-

ing season. This PC1 shows spatial variability of NDVI for
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the whole of NDVI mapping dates for each year. Thus, each

PC1 map for 2012 explains 80.57 % of the temporal vari-

ability of each geographical location within the assay area,

and 85.92 % for the 2013 growing season. Thus, the PC1 for

each year shows more than 80 % of the mean variability of

the NDVI values throughout both seasons in each of the ir-

rigation treatments and their respective plots. In general, the

PC1 map for 2013 shows higher and more homogeneous val-

ues than the 2012 one, indicating a higher and more homo-

geneous vegetative growth of grapevines.

Table 8 shows the level of relationship of NDVI values

between the different mapping dates for each irrigation treat-

ment. Generally speaking, in both 2012 and 2013 there was

an increase in the determination coefficient (R2) given by the

NDVI values as the season progressed, indicating that the

continuous development of the vineyard canopy was slow-

ing; that is, the development rate or evolution of that canopy

was increasingly smaller until the harvest stage was reached.

However, the behaviour of the different irrigation treatments

did not evolve equally either within years or between years.

In 2012, the treatment with higher water doses (fully wa-

tered) had low values of correlation (R2 lower than 0.65)

in all NDVI mapping dates due to a higher development

rate versus the rest of water and rainfed treatments during

the later phenological stages of the vineyard, thus indicating

higher change rates. Conversely, Non-watered treatment had

determination coefficients above 0.65 points, which suggests

a low development rate due to lower hydric availability as a

limiting factor. Meanwhile, the 2013 season showed a sim-

ilar behaviour pattern in the extreme water treatments. Ob-

viously, the determination coefficients were higher and more

homogeneous than the previous season between the different

mapping dates due to the intense precipitations, these being

R2 < 0.77 for fully watered and R2 > 0.73 for non-watered

treatments. These results point to a lower canopy develop-

ment than in 2012 and, in the 2013 season, the differences

between treatments were less pronounced.

With respect to differences in spatial variability of vegeta-

tive growth between the years tested, the 2013 season showed

greater homogeneity, where the highest increase was found

in the northern half of the test area, regardless of the water

dose applied. Conversely, this vegetative development was

lower in the south, where the southern plot of non-watered

treatment did not have lower vegetative growth, although it

did respond to a spatial pattern. Thus, the vegetation response

in 2012 was more dependent on the irrigation treatments,

while in 2013 it was more dependent on soil characteristics

or other edaphic–climatic variables. In 2013, RDI 50-20 and

RDI 50-0 treatments became RDI 30a and RDI 30b respec-

tively, with water doses of 30 % of ETc during the whole irri-

gation period. In the same way that the rest of the treatments

had higher NDVI values in 2013, RDI 30 also showed higher

NDVI values than the RDI treatments of the previous season.

However, despite having the same water dose, RDI 30b gave

lower values than RDI 30a during most of the season (data

not shown), thus suggesting once again that water dose must

be redefined taking into account climate and soil properties.

According to Howell (2001), there must be an optimal

method of crop management in any situation, in order to

obtain the desired yields and qualities, but intra-year and

between-year management must be performed in accordance

with the terroir features of each year.

4 Conclusions

Water level and vegetative growth were clearly related;

greater availability of water resources gave rise to greater

vegetative development of the vineyard. However, spatial–

temporal changes in climatic quality or in soil properties also

affect vegetative expression. To the already estimated differ-

ences in vegetative growth of grapevines between different

water doses, one must add the effects that climate and soil

properties have on plants. Consequently, the application of

the same cultural practices in each growing season makes it

unfeasible to attain stable goals, i.e. the same level of qual-

ity in grapes and wines or similar yields every season. The

application of some precision agriculture techniques to the

vineyard crop, through real-time measurements of NDVI and

ECa, makes it possible to determine homogeneous zones of

growth and development in the vineyard dependent on cli-

matic and soil characteristics for a specific irrigation treat-

ment. Thus, according to the results of this study, the follow-

ing can be concluded:

i. In global terms, the higher the water doses the higher

the NDVI values and, hence, the greater the vegetative

growth of the vineyard.

ii. Vegetative development is not homogeneous, even

when the same cultural practices are being used, but

spatial and temporal variability occur depending on cli-

matic and soil characteristics and their interactions.

iii. It is necessary for crop management to adapt to the vari-

ability of agronomic factors in order to achieve homo-

geneous vegetative growth even in zones where the soil

characteristics are different.

An irrigation schedule based on real-time NDVI results, and

knowledge of the variability of soil characteristics could be

the basis for improved vineyard management.
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